
Scripting Plugin for Wings3D

Author: Edward Blake

April 7, 2023

This document is split in three sections:

1. Script Information (.wscr)

2. Scheme Scripting

3. Python Scripting

Script Information (.wscr)

What are .wscr �les?

Wings SCRipt �les provide information so that scripts can be used like normal
plugins in wings, WSCR �les specify:

� Name and description of the script.

� If the script is a import, export, shape or command script.

� Parameters to ask the user before starting the script.

When a user opens a script chooser dialog, the script search path is traversed
for all wscr �les, the name in the wscr �le is used for the name shown in the
script chooser dialog.

type Directive

type "py"

This is either �scm� or �py�, depending on if the script is a Scheme or Python
�le.

1

name Directive

name ?__(1 ,"Raw Tr iang l e s (. raw)")

A name for the script, which appears in the script chooser dialog.

mode Directive

mode " import "

The mode indicates what kind of script it is. The mode determines in which
script chooser the script will show up. If a script has �export� for mode, it
will only show up when choosing �Script-based exporters� in the �File� �Export�
menu.

Kind of script mode

New shapes
Importers import
Exporters export

Simple whole object commands simple_body_command
New shapes scripts create a new shape.
Importer scripts are Found in File > Import. Returns an E3D �le
Exporter scripts are Found in File > Export. Takes an E3D �le.
Simple whole object command scripts changes point coordinates and vertex

attributes.

desc Directive

desc ?__(2 ," This s c r i p t does something ")

A short description can be added to provide more information about what the
script does.

include Directives

i n c lude "(%)_dialog . i n c l r "

WSCR �les can include other �les, it is recommended to move all the parameter
related con�guration to another �le and add an include directive towards it so
as to keep the main wscr �le small. This is important as each time the user
opens a script chooser dialog, every directory is traversed for every wscr �le, and

2

each wscr �le found is read for it's information to display in the script chooser
browser.

The script chooser traversal process reads every wscr �le, but it does not
read the include directives. When a script is invoked, the include directives
are used to read the rest of the con�guration. A parenthesis wrapped percent
symbol �(%)� auto expands to the name of the .wscr �le before the extension.

params_title Directive

params_tit le ?__(3 ,"Command Se t t i n g s ")

The params_title directive indicates the titlebar string of the dialog that is
shown for user input.

params_templates Section

params_templates {
template " export " ""

}

Param templates are standard groups of parameters that are used by most plu-
gins in Wings3D for consistency. For example, importers might use the import
template to show the �ip axis and scale parameters. When a template is used,
the corresponding code that interprets the standard parameters to automatically
modify the E3D tuple will also be handled by the scripting interface.

template Directive

template " export " ""

A template in the params_template section.

params Section

params {
param " S i z e " "2 .0"
. . .

}

The params section contains param directives.

3

param Directive

param " S i z e " "2 .0"

A param directive speci�es one �eld for user input

extensions Section

ex t en s i on s {
ext " . t r e s " ?__(5 ,"Godot Mesh Library ")

}

The extensions section indicates the extensions that are supported by the im-
porter or exporter script. Each line within the section should be a ext directive,
with its �rst argument the extension including the dot, and the second argument
is a description of the �le format.

params_init Instructions Section

params_init {
do "1>$ ' subd iv i s i on s ' "

}

The params_init section behaves as a subroutine, with each directive being
evaluated sequentially. This section is used to load values into temporary vari-
ables to pass to the params and params_set section. The state of temporary
variables do not carry over after the params section. The argument of a do

instruction is not a simple string. Refer to The Query Mini Language in the
next section on how to write the argument.

params_set Instructions Section

params_set {
export_param " include_uvs " " bool (params/ include_uvs)"
. . .

}

The params_set section behaves as a subroutine, with each directive within
assigning a value to a parameter sequentially. This detail is relevant as the
variable query string of the instructions can set temporary variables for later
instructions to use.

4

export_param Instruction

export_param " subd i v i s i o n s " "params/ subd i v i s i o n s "

Sets an export parameter for the wpa:export function or some scripting ex-
port functions on the scripting plugin side. For �script_texture_convert�,
the recommended option is �'user'� with the export template for the texture
handling. The second argument is not a simple string. Refer to The Query
Mini Language in the next section on how to write the second argument.

import_param Instruction

import_param " scr ipt_texture_convert " " ' auto ' "

Sets an import parameter for the wpa:import function or some scripting im-
port functions on the scripting plugin side. For �script_texture_convert�,
the recommended option is �'auto'� for the texture handling. The second ar-
gument is not a simple string. Refer to The Query Mini Language in the
next section on how to write the second argument.

script_param Instruction

script_param " t e s t " "1"

Sets an extra parameter for the script, which has to be accessed through the
extra_params variable in Python, or the *extra-params* variable in Scheme.
The second argument is not a simple string. Refer to The Query Mini Lan-
guage in the next section on how to write the second argument.

extra_file Section

e x t r a_ f i l e " i con " {
t i t l e "Choose smal l image"
ex t en s i on s {

. . .
}

}

An extra input �le which can be used by any of the script modes. The �rst
argument should be the name that will be set in extra_params for the script.
Set the title and extensions for it.

5

Language �les

Like normal wings3d plugins, wscr �les can use language �les to localize the
user interface text into multiple languages. The lang �le needs to be in the
same directory as the wscr �le, and begin with the same base �le name without
the extension, with a underscore and a language code following it, followed by
the �.lang� �le extension. The format of the language �le is the same Erlang
term format as wings3d lang �les. To localize a string in the wscr �le, enclose
the string in the same enclosing syntax used in Erlang wings3d source �les.

name ?__(1 ," Color ")

For a script called �script_name.wscr�, the lang �le for French should be named
�script_name_fr.lang�, and the content resembles other Wings3D lang �les but
the outer name is script and the inner name is wscr:

{ s c r i p t ,
[
{wscr ,
[
{1 ," Couleur "}

] }
] } .

The Query Mini Language

The query language is designed to be able to navigate the Erlang terms used by
Wings3D with a simple path-like syntax.

When the user enters parameter settings, before the script is invoked, there
will be a need to set some elaborate settings for wpa:export or wpa:import

through export_param and import_param instructions. The query language is
used for referencing parameter values in the script information �le as well as for
communicating between the script and plugin.

First Identi�er

The �rst identi�er in the query can be an identi�er such as st, params, a tempo-
rary variable retrieval, a function call, a tuple/list constructor or a literal such
as 1, 'atom' or "string".

Atoms

Atoms must be enclosed in single quotes, words without single quotes are not
automatically made into atoms.

6

e.g.

' t r i angu la t ed '

Strings

Strings are enclosed in double quotes.
e.g.

"Sample t ext "

Numbers

Integers and �oating point numbers can be used in the query.
e.g.

1
1 .2

Dot Notation

va r i ab l e . shapes

With some records such as 'st' and 'we', �elds of those records can be accessed
using a dot notation. There is no need to specify the record type itself as done
in Erlang because the record is inspected at runtime to match the record type
for a �eld name.

However, only a few record types have their �elds registered in the plugin to
use the dot notation. Alternatively, record �elds can be accessed with the tuple
index operator, where {0} is the atom of the record and {1} is the �rst �eld.

e.g.

s t . shapes

Associative List Path

va r i ab l e /key

Associative lists can be navigated by their keys with the "slash" (/) charac-
ter. If the associated lists contain more associated lists, the slash can be chained
like a path to access deeper elements.

e.g.

params/ include_uvs

7

Tuple by index

va r i ab l e {0}

The entries of a tuple can be accessed by a zero-based index by enclosing a
number inside curly brackets, the �rst entry is {0}. Indexing operators can be
chained as necessary to access deeper elements.

e.g.

tup l e (1 , 2 , 3 , 4){2}

List by index

va r i ab l e [0]

The entries of a list can be accessed by a zero-based index by enclosing a
number inside square brackets, the �rst entry is [0] Indexing operators can be
chained as necessary to access deeper elements.

e.g.

l i s t (1 , 2 , 3 , 4) [1]

Store to

>$ ' var i ab l e '

Store the current value into a temporary variable for later retrieval, the
syntax is a greater than symbol, a dollar sign and a integer or atom literal. This
operator returns the same value that it is storing so it can be added at the end
of a query chain without a�ecting the return value.

e.g.

params/ include_uvs>$ ' include_uvs '

Get from

<$ ' var i ab l e '

Get the value stored in a temporary variable, the syntax is a lesser than
symbol, a dollar sign and a integer or atom literal, this can appear at the
beginning of the query.

e.g.

<$ ' s e t t i n g s ' / group1/ s e t t i n g

Call function

8

module : f unc t i on (. . .)

Calls a function from a module, with the given arguments. A function call
can appear at the beginning of the query.

e.g.

l i s t s : r e v e r s e (l i s t (1 , 2 , 3 , 4))

List constructor

l i s t (1 , ' two ' , 3)

Construct a list with given values. A list constructor can appear at the
beginning of the query. It is usually more convenient to use %setvar with tem-
porary variables to input list data structures from the script to the plugin than
to use inline constructors.

Tuple constructor

tup l e (1 , 2 , ' three ')

Construct a tuple with given values. A tuple constructor can appear at
the beginning of the query. It is usually more convenient to use %setvar with
temporary variables to input tuple data structures from the script to the plugin
than to use inline constructors.

Boolean Value

bool (1)

Get either the atom 'true' or 'false' from another value.

Integer Value

i n t ("1")

Get the integer value from another value

Float Value

f l o a t (" 1 . 0 ")

Get the �oat value from another value.

Ok Test

ok_test (o rdd i c t : f i nd (key , $<' va r i ab l e ') , "not found ")

9

Tests if the return of the �rst argument is a tuple with the �rst element being
'ok'. If it is an 'ok' tuple, the tuple's value is returned. If the �rst argument is
not an 'ok' tuple, the second argument is evaluated and returned instead.

Value Test

value_test (' value ' , gb_trees : lookup (key , $<' va r i ab l e ') , "not found ")

A general version of ok_test that tests if the return of the second argument
is a tuple with the �rst element being equal to the �rst argument. If the second
argument does not match, the third argument is evaluated and returned instead.

Conditional If

i f (bool (<$ ' cond ') , "on " , " o f f ")

Tests the �rst argument if it evaluates to the atom 'true', then the second
argument (the �then� argument) is evaluated, otherwise the third (the �else�
argument) is evaluated.

Scheme Scripting Guide for Wings3D

Online Resources for the Scheme Language

A very non exhaustive list of resources:
Yet Another Scheme Tutorial
http://www.shido.info/lisp/idx_scm_e.html
The Scheme Programming Language 4th ed.
https://www.scheme.com/tspl4/
Simply Scheme: Introducing Computer Science
https://people.eecs.berkeley.edu/∼bh/ss-toc2.html
R5RS (reference for functions found in nearly every Scheme)
https://conservatory.scheme.org/schemers/Documents/Standards/R5RS/
Gauche reference
http://practical-scheme.net/gauche/man/gauche-refe/index.html

.wscr File

For your script to be able to appear in the script chooser dialog, you will need
to make a .wscr �le with the same base name as your main Scheme script �le.
For example, if your script �le is example.scm, your wscr �le should be named
example.wscr. The name that appears in the script chooser is the name speci�ed
in the .wscr �le.

10

http://www.shido.info/lisp/idx_scm_e.html
https://www.scheme.com/tspl4/
https://people.eecs.berkeley.edu/~bh/ss-toc2.html
https://conservatory.scheme.org/schemers/Documents/Standards/R5RS/
http://practical-scheme.net/gauche/man/gauche-refe/index.html

Details Of The Script

Initial Bootstrap Script

A bootstrap script that comes with the script plugin is �rst launched which
then de�nes some basic functions, sometimes adds include paths, and gets from
stdin the actual script being invoked as well as parameters that goes with it.

Parameters that are passed in

When a script is invoked, parameters from the dialog box are passed in, other
parameters are also passed in depending on the type of script.

Returning values from the script

Scripts write to stdout their response before exiting.

(l i s t ' ok ' (new_shape . . .))

Calling functions in Wings3D from a script

Scripts can communicate with the plugin by setting temporary variables and
using queries to call functions and get the return value. Temporary variables
makes it easier to input elaborate data structures as arguments by referencing
them in the query.

Set value to variable:

(l i s t '% se tva r "var1 " ' (1 2 3 4))

The reply sent back for setvar:

(l i s t '% setok "var1 ")

Query:

(l i s t '%query " l i s t s : r e v e r s e (<$ ' var1 ') ")

The reply sent back for queries:

(l i s t '% response ' (4 3 2 1))

New Shape Scripts

New shape scripts are available when right clicking with no selection
An example of a complete Scheme script to create a shape and send it back

to Wings3D:

11

(wr i t e (l i s t ' new_shape "MyShape"
' (

(0 1 3 2)
(6 7 5 4)
(1 0 4 5)
(2 3 7 6)
(0 2 6 4)
(3 1 5 7)

) ' (
#(−2.0 0 .5 −2.0)
#(−2.0 0 .5 2 . 0)
#(2.0 0 .5 −2.0)
#(2.0 0 .5 2 . 0)
#(−2.0 −0.5 −2.0)
#(−2.0 −0.5 2 . 0)
#(2.0 −0.5 −2.0)
#(2.0 −0.5 2 . 0)

)))

The e3d object way is also possible, all �new shape� scripts write a list where
the �rst element is the symbol new_shape:

(d e f i n e Fs . . .) ; L i s t o f i n d i c e s i n to v e r t i c e l i s t
(d e f i n e Vs . . .) ; Ve r t i c e l i s t
(wr i t e (l i s t ' new_shape "MyShape" Fs Vs))

Command Scripts

Command scripts are available when right clicking on a selected object
Return set_points
The �points� extra parameter is needed to access the list of vertices, which

come as a vertice number and a 3 dimensional position.

(d e f i n e op (l i s t −r e f
(a s soc "op" * extra−params *) 1))

(d e f i n e po in t s (l i s t −r e f
(a s soc " po in t s " * extra−params *) 1))

The following script shifts all the vertice positions of a selected object by
0.5:

12

(d e f i n e op (l i s t −r e f
(a s soc "op" * extra−params *) 1))

(d e f i n e po in t s (l i s t −r e f
(a s soc " po in t s " * extra−params *) 1))

(d e f i n e newpoints
(map (lambda (p)

(d e f i n e a (vector−r e f p 0))
(d e f i n e b (vector−r e f p 1))
(d e f i n e x (vector−r e f b 0))
(d e f i n e y (vector−r e f b 1))
(d e f i n e z (vector−r e f b 2))
(vec to r a (vec to r

(+ 0 .5 x)
(+ 0 .5 y)
(+ 0 .5 z)))

) po in t s))
(newl ine)
(wr i t e (l i s t (l i s t ' se t_points newpoints)))

Importer Scripts

Importer scripts are available from the �File� > �Import� menu.
Return e3d_�le
The ��lename� extra parameter is needed which contain the �le path of the

�le to read:

(d e f i n e f i l ename
(l i s t −r e f

(a s soc " f i l ename " * extra−params *) 1))

Constructing e3d objects involves using make-e3d_face, make-e3d_object,
make-e3d�le, etc.

After parsing the �le, the importer writes the contents of e3d_�le back to
Wings3D:

(newl ine)
(wr i t e (l i s t ' ok (make−e3d_f i l e ` (ob j s , (l i s t Obj)))))

Exporter Scripts

Exporter scripts are available from the �File� > �Export� and �File� > �Export
Selected� menus.

Read e3d_�le

13

The ��lename� and �content� extra parameters are needed, the �le name is
chosen by the user to save the model, and the content contains an e3d_�le data
structure.

(d e f i n e f i l ename
(l i s t −r e f

(a s soc " f i l ename " * extra−params *) 1))
(d e f i n e content

(l i s t −r e f
(a s soc " content " * extra−params *) 1))

After writing the content to a �le, the exporter writes an ok to Wings3D:

(newl ine)
(wr i t e ' (ok))

E3D Function Reference

The E3D helper functions are loaded already when using Scheme.

e3d_face

(make-e3d_face . sc)
Make a e3d_face list structure with a constructor list, available items are

'vs 'vc 'tx 'ns 'mat 'sg 'vis
(e3d_face? l)

Is the list structure an e3d_face?
(e3d_face-vs l)
(e3d_face-vc l)
(e3d_face-tx l)
(e3d_face-ns l)
(e3d_face-mat l)
(e3d_face-sg l)
(e3d_face-vis l)

Get the value of a given �eld in e3d_face.

e3d_mesh

(make-e3d_mesh . sc)
Make a e3d_mesh list structure with a constructor list, available items are

'type 'vs 'vc 'tx 'ns 'fs 'he 'matrix
(e3d_mesh? l)

Is the list structure an e3d_mesh?
(e3d_mesh-type l)
(e3d_mesh-vs l)

14

(e3d_mesh-vc l)
(e3d_mesh-tx l)
(e3d_mesh-ns l)
(e3d_mesh-fs l)
(e3d_mesh-he l)
(e3d_mesh-matrix l)

Get the value of a given �eld in e3d_mesh

e3d_object

(make-e3d_object . sc)
Make a e3d_object list structure with a constructor list, available items are

'name 'obj 'mat 'attr
(e3d_object? l)

Is the list structure an e3d_object?
(e3d_object-name l)
(e3d_object-obj l)
(e3d_object-mat l)
(e3d_object-attr l)

Get the value of a given �eld in e3d_object

e3d_�le

(make-e3d_�le . sc)
Make a e3d_�le list structure with a constructor list, available items are

'objs 'mat 'creator 'dir
(e3d_�le? l)

Is the list structure an e3d_�le?
(e3d_�le-objs l)
(e3d_�le-mat l)
(e3d_�le-creator l)
(e3d_�le-dir l)

Get the value of a given �eld in e3d_�le

e3d_image

(make-e3d_image . sc)
Make a e3d_image list structure with a constructor list, available items are

'type 'bytes_pp 'alignment 'order 'width 'height 'image '�lename 'name 'extra
(e3d_image? l)

Is the list structure an e3d_image?
(e3d_image-type l)
(e3d_image-bytes_pp l)
(e3d_image-alignment l)
(e3d_image-order l)
(e3d_image-width l)

15

(e3d_image-height l)
(e3d_image-image l)
(e3d_image-�lename l)
(e3d_image-name l)
(e3d_image-extra l)

Get the value of a given �eld in e3d_image

Python Scripting Guide for Wings3D

Online Resources for the Python language

A non exhaustive list of resources:
Python Tutorial
https://docs.python.org/3/tutorial/
Python Language Reference
https://docs.python.org/3/reference/

.wscr File

For your script to be able to appear in the script chooser dialog, you will need
to make a wscr �le with the same base name as your main python script �le.
For example, if your script �le is example.py, your wscr �le should be named
example.wscr. The name that appears in the script chooser is the name speci�ed
in the wscr �le.

Details Of The Script

Initial Bootstrap Script

A bootstrap script that comes with the script plugin is �rst launched which
then de�nes some basic functions, sometimes adds include paths, and gets from
stdin the actual script being invoked as well as parameters that goes with it.

Parameters that are passed in

When a script is invoked, parameters from the dialog box are passed in, other
parameters are also passed in depending on the type of script.

Returning values from the script

Scripts write to stdout an OutputList before exiting.

16

https://docs.python.org/3/tutorial/
https://docs.python.org/3/reference/

Calling functions in Wings3D from a script (WIP)

Scripts can communicate with the plugin by setting temporary variables and
using queries to call functions and get the return value. Temporary variables
makes it easier to input elaborate data structures as arguments by referencing
them in the query.

(WIP)
Set value to variable:

(l i s t '% se tva r "var1 " ' (1 2 3 4))

The reply sent back for setvar:

(l i s t '% setok "var1 ")

Query:

(l i s t '%query " l i s t s : r e v e r s e (<$ ' var1 ') ")

The reply sent back for queries:

(l i s t '% response ' (4 3 2 1))

New Shape Scripts

New shape scripts are available when right clicking with no selection.
A complete example of a Python script to create a new shape:

b = w3d_newshape . NewShape ()
b . f s = w3d_newshape . ListOfArrays ([

[0 , 1 , 3 , 2] ,
[6 , 7 , 5 , 4] ,
[1 , 0 , 4 , 5] ,
[2 , 3 , 7 , 6] ,
[0 , 2 , 6 , 4] ,
[3 , 1 , 5 , 7]

])
b . vs = w3d_newshape . ListOfTuples ([

(−2 .0 ,0 .5 , −2 .0) ,
(−2 . 0 , 0 . 5 , 2 . 0) ,
(2 . 0 , 0 . 5 , −2 . 0) ,
(2 . 0 , 0 . 5 , 2 . 0) ,
(−2.0 ,−0.5 ,−2.0) ,
(−2 .0 , −0 .5 ,2 .0) ,
(2 .0 , −0 .5 , −2 .0) ,
(2 . 0 , −0 . 5 , 2 . 0)

])
o = b . as_output_l ist ()
o . wr i te_l i s t_out (sys . s tdout)

17

To create a shape, create a geometry with E3DMesh and E3DObject, and
assign E3DObject to the obj attribute of a NewShape object. And then output
the output list of NewShape to stdout.

e3d_o = w3d_e3d . E3DObject ()
e3d_o . obj = mesh
nshp = w3d_newshape . NewShape ()
nshp . p r e f i x = " shape"
nshp . obj = e3d_o
o = nshp . as_output_l ist ()
o . wr i te_l i s t_out (sys . s tdout)

Command Scripts

Command scripts are available when right clicking on a selected object.
Return set_points
(WIP)
The �points� extra parameter is needed to access the list of vertices, which

come as a vertice number and a 3 dimensional position.

po in t s = extra_params [" po in t s "]

Importer Scripts

Importer scripts are available from the �File� > �Import� menu.
The ��lename� extra parameter is needed which contain the �le path of the

�le to read:

f i l ename = extra_params [" f i l ename "]

Importers take the �lename to read the �le needed, construct a E3DObject,
add it to an E3DFile and return the output list as part of an �ok� tuple.

Constructing E3D objects involves instancing E3DFace, E3DObject, E3DFile,
etc.

p r i n t ("")
e3df = w3d_e3d . E3DFile ()
e3df . ob j s = [obj] # obj i s an E3DObject
o_ok = OutputList ()
o_ok . add_symbol (" ok ")
o_ok . add_l i s t (e3df . as_output_l ist ())
o_ok . wr i te_l i s t_out (sys . s tdout)

18

Exporter Scripts

Exporter scripts are available from the �File� > �Export� and �File� > �Export
Selected� menus.

Read E3DFile
The ��lename� and �content� extra parameters are needed, the �le name is

chosen by the user to save the model, and the content contains an e3d_�le data
structure.

f i l ename = extra_params [" f i l ename "]
content = w3d_e3d . E3DFile ()
content . load_from (extra_params [" content "])

Exporters take in both a �lename and the e3d_�le content which has to be
loaded with E3DFile.load_from(...). After writing the �le to disk, create an
�ok� tuple and write its output list out:

p r i n t ("")
o = OutputList ()
o . add_symbol (" ok ")
o . wr i te_l i s t_out (sys . s tdout)

OutputList Function Reference

Python is somewhat di�erent from Erlang and Scheme for their data structures,
so to serialize objects for input and output with the script plugin, a helper class
called OutputList is used. Other helper classes also use OutputList to be able
to load and write data to and from Wings3D.

class OutputList

Visible attributes lst_cont, lst_type

OutputList()
Create a new empty OutputList instance

list.add_symbol(a)
Add a symbol (interned string) to the list

list.add_str(a)
Add a string to the list

list.add_number(a)
Add a number to the list

list.add_numbers(alst)
Add several numbers to the list, it does not add a sublist

list.add_integer(a)
Add an integer to the list

list.add_integers(alst)

19

Add several integers to the list, it does not add a sublist
list.add_�oat(a)

Add a �oating point number to the list
list.add_�oats(alst)

Add several �oating point numbers to the list, it does not add a sublist
list.add_list(a)

Add a sublist to the list
list.add_vector(a)

Add a vector (tuple) to the list
list.add(a, typ)

Add an item with type number to the list, this method shouldn't be used
directly.
list.write_list_out(ost)

Write the list to the stream ost

NewShape (w3d_newshape) Function Reference

The w3d_newshape module contains NewShape helper classes and can be im-
ported with:

import w3d_newshape

class ListOfArrays

Visible attributes: l
ListOfArrays()

Create a new empty ListOfArrays instance
list.as_output_list()

Return an OutputList instance

class ListOfTuples

Visible attributes: l
ListOfTuples()

Create a new empty ListOfTuples instance
list.as_output_list()

Return an OutputList instance

class NewShape

Visible attributes pre�x, fs, vs, obj, mat

NewShape()
Create a NewShape instance

shape.as_output_list()

20

Return an OutputList instance, the kind of tuple that is returned is di�erent
depending on if obj is set, if it is set the tuple contains obj and mat. If it is not
set, it returns a tuple with fs and vs.

e3d_o = w3d_e3d . E3DObject ()
e3d_o . obj = mesh
shp = w3d_newshape . NewShape ()
shp . p r e f i x = " shape"
shp . obj = e3d_o
o = shp . as_output_l ist ()
o . wr i te_l i s t_out (sys . s tdout)

E3D (w3d_e3d) Function Reference

The w3d_e3d module contains E3D helper classes and can be imported with:

import w3d_e3d

class E3DFace

Visible attributes vs, vc, tx, ns, mat, sg, vis

E3DFace()
Creates a new E3DFace instance

face.as_output_list()
Outputs the whole E3DFace instance and all its values into an output list,

not usually used directly.
face.load_from(expr)

Load contents into a E3DFace instance, not usually used directly.

class E3DMesh

Visible attributes: type, vs, vc, tx, ns, fs, he, matrix

E3DMesh()
Creates a new E3DMesh instance

mesh.as_output_list()
Outputs the whole E3DMesh instance and all its values into an output list,

not usually used directly.
mesh.load_from(expr)

Load contents into a E3DMesh instance, not usually used directly.

class E3DObject

Visible attributes name, obj, mat, attr

21

E3DObject()
Creates a new E3DObject instance

obj.as_output_list()
Outputs the whole E3DObject instance and all its values into an output list,

not usually used directly.
obj.load_from(expr)

Load contents into a E3DObject instance, not usually used directly.

class E3DImage

Visible attributes type, bytes_pp, alignment, order, width, height, image,
�lename, name, extra

E3DImage()
Creates a new E3DImage instance

image.as_output_list()
Outputs the whole E3DImage instance and all its values into an output list,

not usually used directly.
image.load_from(expr)

Load contents into a E3DImage instance, not usually used directly.

class MaterialMaps

Visible attributes maps

MaterialMaps()
Create a new MaterialMaps instance

maps.as_output_list()
Outputs the whole MaterialMaps instance and all its values into an output

list, not usually used directly.
maps.load_from(tlist)

Load contents into a MaterialMaps instance, not usually used directly.

class MaterialOpenGLAttributes

Visible attributes ambient, specular, shininess, di�use, emission, metallic,
roughness, vertex_colors

MaterialOpenGLAttributes()
Creates a new MaterialOpenGLAttributes instance

opengl.as_output_list()
Outputs the whole MaterialOpenGLAttributes instance and all its values

into an output list, not usually used directly.
opengl.load_from(tlist)

Load contents into a MaterialOpenGLAttributes instance, not usually used
directly.

22

class Material

Visible attributes name, attrs

Material()
Creates a new Material instance

mat.as_output_list()
Outputs the whole Material instance and all its values into an output list,

not usually used directly.
mat.load_from(expr)

Load contents into a Material instance, not usually used directly.

class E3DFile

Visible attributes objs, mat, creator, dir

E3DFile()
Creates a new E3DFile instance

e3df.as_output_list()
Outputs the whole E3DFile instance and all its values into an output list

which is then to be written to stdout

b = w3d_e3d . E3DFile ()
b . ob j s . append (E3DObject ())
o_ok = OutputList ()
o_ok . add_symbol (" ok ")
o_ok . add_l i s t (b . as_output_l ist ())
o_ok . wr i te_l i s t_out (sys . s tdout)

e3df.load_from(expr)
Load contents into a E3DFile instance

content = w3d_e3d . E3DFile ()
content . load_from (extra_params [" content "])

23

